
J Glob Optim (2008) 41:417–426
DOI 10.1007/s10898-007-9229-y

A modified inexact operator splitting method
for monotone variational inequalities

Min Li · Abdellah Bnouhachem

Received: 9 December 2006 / Accepted: 7 September 2007 / Published online: 27 September 2007
© Springer Science+Business Media, LLC 2007

Abstract The Douglas–Peaceman–Rachford–Varga operator splitting methods (DPRV
methods) are attractive methods for monotone variational inequalities. He et al. [Numer.
Math. 94, 715–737 (2003)] proposed an inexact self-adaptive operator splitting method based
on DPRV. This paper relaxes the inexactness restriction further. And numerical experiments
indicate the improvement of this relaxation.
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1 Introduction

Let � be a nonempty closed convex subset of Rn and F be a continuous monotone mapping
from Rn into itself. The variational inequality problem is to determine a vector u∗ ∈ � such
that

VI(�, F) (u − u∗)T F(u∗) ≥ 0, ∀u ∈ �. (1)

VI(�, F) includes nonlinear complementarity problems (when � = Rn+) and system of
nonlinear equations (when � = Rn), and thus it has many important applications, e.g., see
[4,5].

It is well known that the problem VI(�, F) is equivalent to the projection equation

u = P�[u − βF(u)],
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where β is a positive constant and P�(·) denotes the projection under the Euclidean norm of
a point onto the set �, i.e.,

P�(v) = argmin{‖v − u‖ | u ∈ �}.
As a direct result, solving VI(�, F) is equivalent to finding a zero point of the continuous
nonsmooth function

e(u, β) := u − P�[u − βF(u)]. (2)

An advantageous method for solving variational inequality problems is the Douglas–
Peaceman–Rachford–Varga operator splitting method (for short DPRV method, see p. 240
in [14]), which combines the Peaceman–Rachford algorithm [12] and the Douglas–Rachford
algorithm [2]. For given uk ∈ Rn , γ and β, let uk+1∗ be the solution of the following system
of nonlinear smooth equations:

compute u ∈ Rn such that u + βF(u) − uk − βF(uk) + γ e(uk, β) = 0. (3)

The new iterate uk+1 of the exact version of DPRV method is taken by

uk+1 := uk+1∗ .

Some properties of such methods have been studied by Lions and Mercier [10], and Fuku-
shima [6]. However sometimes it could be very expensive or even impossible to solve the
system of nonlinear Eq. (3) exactly. In 2003, He et al. [9] proposed self-adaptive operator
splitting methods to seek an inexact solution of (3) as the new iterate uk+1, which is requested
to satisfy the following condition:

‖uk+1 + βk F(uk+1) − uk − βk F(uk) + γ e(uk, βk)‖ ≤ ηk‖e(uk, βk)‖, (4)

where {ηk} is a nonnegative sequence with
∑∞

k=0 η2
k < +∞. This condition is still strict.

Solving each subproblem usually requires numerous function values. In practice, these eval-
uations may be costly and time-consuming. So numerical methods which could effectively
reduce the number of employing function values are highly desired.

In this paper, we study a modified inexact operator splitting method which significantly
relaxes the inexactness restriction to

‖uk+1 + βk F(uk+1) − uk − βk F(uk) + γ e(uk, βk)‖ ≤ νk‖e(uk, βk) − e(uk+1, βk)‖,

with sup νk = ν <
2 − γ

2
and γ ∈ (0, 2).

To illustrate the superiority of this improvement, some numerical experiments will be pre-
sented in Sect. 4.2.

Throughout this paper we assume that the operator F is monotone and that the solution
set of VI(�, F), denoted by �∗, is nonempty and contains at least one finite element. We use
u∗ to denote any finite point in �∗.

2 Preliminaries

This section states some preliminaries that are useful in the convergence analysis of this
paper. First, projection on a closed convex set plays an important role in our analysis. A well
known property of the projection mapping is

(v − P�(v))T (u − P�(v)) ≤ 0, ∀v ∈ Rn, u ∈ �. (5)
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By setting v = ū − βF(ū), u = P�[ũ − βF(ũ)] and v = ũ − βF(ũ), u = P�[ū − βF(ū)]
in (5) respectively, we obtain

{ū − βF(ū) − P�[ū − βF(ū)]}T {P�[ū − βF(ū)] − P�[ũ − βF(ũ)]} ≥ 0 (6)

and

{P�[ũ − βF(ũ)] − ũ + βF(ũ)}T {P�[ū − βF(ū)] − P�[ũ − βF(ũ)]} ≥ 0. (7)

Adding (6) and (7) we get

{[e(ū, β) − e(ũ, β)] + β[F(ũ) − F(ū)]}T {[e(ũ, β) − e(ū, β)] + (ū − ũ)} ≥ 0. (8)

Combining this inequality with the monotonicity of F , we get the following lemma imme-
diately.

Lemma 1 For all ū, ũ ∈ Rn and β > 0 we have

{(ū − ũ) + β[F(ū) − F(ũ)]}T [e(ū, β) − e(ũ, β)]
≥ ‖e(ũ, β) − e(ū, β)‖2. (9)

For given u ∈ Rn , the magnitude ‖e(u, β)‖ is dependent on β. For simplicity, we write
e(u) to represent e(u, 1). The following properties of ‖e(u, β)‖ are needed in the convergence
analysis.

Lemma 2 For any u ∈ Rn and β̃ ≥ β > 0, we have

‖e(u, β̃)‖ ≥ ‖e(u, β)‖ (10)

and

‖e(u, β̃)‖
β̃

≤ ‖e(u, β)‖
β

. (11)

Proof See [15] for a simple proof. �	
Recall that u ∈ �∗ is equivalent to e(u) = 0 (see p. 267 in [1]), we take ‖e(u)‖ ≤ ε as

the stopping criterion. Convergence means that for any given ε > 0 the proposed method
will find a uk ∈ � in finite iterations such that ‖e(uk)‖ ≤ ε. The following theorem can be
derived from Theorem 2 of [9]. For completeness, a proof is provided.

Theorem 1 Let c > 0 be a constant, {βk} ⊂ [BL ,+∞) with BL > 0 and {ξk} be nonneg-
ative with

∑∞
k=0 ξk < +∞. If there is a k0 > 0 such that for all k ≥ k0 and for any u∗

( finite) ∈ �∗, the sequence {uk} satisfies

‖(uk+1 − u∗) + βk+1[F(uk+1) − F(u∗)]‖2

≤ (1 + ξk)‖(uk − u∗) + βk[F(uk) − F(u∗)]‖2 − c‖e(uk, βk)‖2, (12)

then the method which generated {uk} is convergent.

Proof From
∑∞

k=0 ξk < +∞ it follows that
∏∞

i=0(1 + ξi ) < +∞. We denote

Cs :=
∞∑

i=0

ξi and C p :=
∞∏

i=0

(1 + ξi ). (13)
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Let ũ (finite) ∈ �∗. From (12) we get

‖(uk+1 − ũ) + βk+1[F(uk+1) − F(ũ)]‖2

≤
k∏

i=k0

(1 + ξi )‖(uk0 − ũ) + βk0 [F(uk0) − F(ũ)]‖2

≤ C p‖(uk0 − ũ) + βk0 [F(uk0) − F(ũ)]‖2, ∀k ≥ k0.

Therefore, there exists a constant C > 0 such that

‖(uk − ũ) + βk[F(uk) − F(ũ)]‖2 ≤ C, ∀k ≥ 0. (14)

From (14) and the monotonicity of F , it is easy to verify that the sequence {uk} is bounded.
Combining (12) and (14), we have

c
∞∑

k=k0

‖e(uk, βk)‖2 ≤ ‖(uk0 − ũ) + βk0 [F(uk0) − F(ũ)]‖2

+
∞∑

k=k0

ξk‖(uk − ũ) + βk[F(uk) − F(ũ)]‖2

≤ C + C
∞∑

k=k0

ξk

≤ (1 + Cs)C (15)

and it follows from Lemma 2 that

lim
k→∞ e(uk, BL) = 0.

The proof is complete. �	
For the convergence proof, as in [3] and [8], we need the following analytical results.

Lemma 3 Let {ak}∞k=0 be a positive series and ak ∈ (0, 1) for all k. If
∏∞

k=0(1 − ak) > 0,
then

1.
∑∞

k=0 ak < +∞ and thus limk→∞ ak = 0;
2.

∏∞
k=0(1 + tak) < ∞ for any t > 0.

Proof The proof follows from elementary mathematical analysis and thus is omitted. �	

3 The modified method and its convergence

In this section, we construct a modified method for monotone variational inequalities and
then prove its convergence. First, we state the framework of this new method.

For given γ ∈ (0, 2), βk > 0 and uk ∈ Rn , if uk �∈ �∗ find an approximate solution of
(3), i.e., find uk+1 in the sense that

�k(u
k+1) := uk+1 + βk F(uk+1) − uk − βk F(uk) + γ e(uk, βk) (16)

under the following inexactness restriction:

‖�k(u
k+1)‖ ≤ νk‖e(uk, βk) − e(uk+1, βk)‖ with sup νk = ν <

2 − γ

2
. (17)
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Since the proposed method is a modified form of operator splitting methods and uk+1 is
the inexact zero point of

�k(u) := u + βk F(u) − uk − βk F(uk) + γ e(uk, βk),

we refer the above method as a modified inexact operator splitting method. For convenience,
we assume that βk ≡ β in the following analysis.

The main property of the sequence generated by the proposed method is listed in the
following theorem. Instead of forcing to reduce the unknown distance value ‖(u − u∗) +
β[F(u)− F(u∗)]‖2 in each iteration, it will show that the sequence {‖e(uk, β)‖} is monotone
non-increasing.

Theorem 2 Let {uk} be the sequence generated by (16)–(17). Then we have

‖e(uk+1, β)‖2 ≤ ‖e(uk, β)‖2 − c1‖e(uk, β) − e(uk+1, β)‖2 with c1 = 2 − (γ + 2ν)

γ
.

(18)

Proof By a manipulation, we have

‖e(uk, β)‖2 = ‖e(uk+1, β)‖2 − ‖e(uk, β) − e(uk+1, β)‖2 + 2e(uk, β)T [e(uk, β)

−e(uk+1, β)]. (19)

Setting ū = uk+1 and ũ = uk in (9), we have

{(uk+1 − uk) + β[F(uk+1) − F(uk)]}T [e(uk+1, β) − e(uk, β)]
≥ ‖e(uk, β) − e(uk+1, β)‖2. (20)

Note that (see (16))

uk+1 − uk + β[F(uk+1) − F(uk)] = �k(u
k+1) − γ e(uk, β).

Hence, it follows from (20) that

γ e(uk, β)T [e(uk, β) − e(uk+1, β)]
≥ ‖e(uk, β) − e(uk+1, β)‖2 + �k(u

k+1)T [e(uk, β) − e(uk+1, β)]. (21)

Substituting (21) into (19), we get

‖e(uk, β)‖2 − ‖e(uk+1, β)‖2 + ‖e(uk, β) − e(uk+1, β)‖2

≥ 2

γ

(
‖e(uk, β) − e(uk+1, β)‖2 − ‖�k(u

k+1)‖ · ‖e(uk, β) − e(uk+1, β)‖
)

(22)

The assertion of this theorem follows from (17) and (22) immediately. �	
Let {uk} be the sequence generated by the proposed method. Since ‖e(uk, β)‖ �= 0

(otherwise uk is a solution), we can define

ηk = νk‖e(uk, β) − e(uk+1, β)‖
‖e(uk, β)‖ . (23)

It follows from this and (17) that

‖�k(u
k+1)‖ ≤ ηk‖e(uk, β)‖. (24)

The following theorem concerns a contractive-like property which is important to the
convergence analysis.
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Theorem 3 Let {uk} be the sequence generated by the modified inexact operator splitting
method. If the nonnegative scalar sequence {ηk} defined by (23) satisfies

∑∞
k=0 η2

k < +∞,
then there exists a kB > 0 such that for any k ≥ kB and any u∗ ( finite) ∈ �∗, we have

‖(uk+1 − u∗) + β[F(uk+1) − F(u∗)]‖2

≤ (1 + ξk)‖(uk − u∗) + β[F(uk) − F(u∗)]‖2 − c2‖e(uk, β)‖2, (25)

where

ξk = 4η2
k

γ (2 − γ )
and c2 = γ (2 − γ )

2
. (26)

Proof The proof is similar to the one for Theorem 4 of [8]. By setting ū = uk and ũ = u∗
in (9) and using e(u∗, β) = 0, we have

{(uk − u∗) + β[F(uk) − F(u∗)]}T e(uk, β) ≥ ‖e(uk, β)‖2

It follows from this and (16) that

‖(uk+1 − u∗) + β[F(uk+1) − F(u∗)]‖2

= ‖(uk − u∗) + β[F(uk) − F(u∗)] − (γ e(uk, β) − �k(u
k+1))‖2

≤ ‖(uk − u∗) + β[F(uk) − F(u∗)]‖2 − 2γ ‖e(uk, β)‖2

+2{(uk − u∗) + β[F(uk) − F(u∗)]}T �k(u
k+1) + ‖γ e(uk, β) − �k(u

k+1)‖2.

(27)

Using Cauchy-Schwarz inequality and (24), we have

2{(uk − u∗) + β[F(uk) − F(u∗)]}T �k(u
k+1)

≤ 4η2
k

γ (2 − γ )
‖(uk − u∗) + β[F(uk) − F(u∗)]‖2 + γ (2 − γ )

4η2
k

‖�k(u
k+1)‖2

≤ 4η2
k

γ (2 − γ )
‖(uk − u∗) + β[F(uk) − F(u∗)]‖2 + γ (2 − γ )

4
‖e(uk, β)‖2. (28)

From (24) and
∑∞

i=0 η2
i < +∞, it is easy to show that there exists a kB ≥ 0 such that for

any k ≥ kB

‖γ e(uk, β) − �k(u
k+1)‖2 ≤ γ 2‖e(uk, β)‖2 + γ (2 − γ )

4
‖e(uk, β)‖2. (29)

Substituting (28) and (29) into (27), we complete the proof. �	
Now we are in the stage to prove the convergence of the proposed method.

Corollary 1 The modified inexact operator splitting method for monotone variational
inequalities is convergent.

Proof The proof is indirect. Since the sequence {‖e(uk, β)‖} generated by the modified
inexact self-adaptive projection method is monotone non-increasing, if the method is not
convergent, we have

lim
k→∞ ‖e(uk, β)‖ = ω > 0. (30)

It follows from Theorem 2 and (23) that

‖e(uk+1, β)‖2

‖e(uk, β)‖2 ≤ 1 − c1
‖e(uk, β) − e(uk+1, β)‖2

‖e(uk, β)‖2 ≤ 1 − (
c1

ν2 )η2
k (31)
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and consequently

∞∏

k=0

‖e(uk+1, β)‖2

‖e(uk, β)‖2 ≤
∞∏

k=0

(
1 − (

c1

ν2 )η2
k

)
. (32)

From (30) and (32) we have
∞∏

k=0

(
1 − (

c1

ν2 )η2
k

)
≥ ω2

‖e(u1, β)‖2 > 0. (33)

Then, it follows from Lemma 3 and 0 < (c1/ν
2)η2

k < 1 (see (31)) that

∞∑

k=0

η2
k < +∞, lim

k→∞ η2
k = 0 and

∞∏

k=0

(1 + tη2
k ) < ∞, ∀ t > 0. (34)

From this and (26), we have
∑∞

k=0 ξk < +∞. Then it follows directly from (25) and Theo-
rem 1 that

lim
k→∞ ‖e(uk, β)‖ = 0,

which contradicts (30) and the theorem is proved. �	

4 Implementation details and numerical experiments

In this section, we present implementation details and some numerical results for the proposed
inexact operator splitting method. Our main interest is to demonstrate the computational supe-
riority of new relaxed inexactness restriction over the original one in He’s DPRV method
[9]. The subproblem of the new method is easier to solve, which means that the number of
calculations of F(u) is reduced effectively.

4.1 Implementation details

From numerical point of view, β‖F(uk+1) − F(uk)‖ ≈ ‖uk+1 − uk‖ is favorable for fast
convergence. According to our numerical experiences, we suggest to adjust βk such that:

1

(1 + s)
≤ ‖βk[F(uk+1) − F(uk)]‖

‖uk+1 − uk‖ ≤ 1 + s,

where s is a given positive constant. In the new method, we set s = 2.
By considering the above improvements, we obtain the following modified inexact oper-

ator splitting method.

Algorithm For given γ ∈ (0, 2), β0 > 0 and u0 ∈ Rn , set k = 0. The sequence {uk} is
generated by the iterative schemes:

Step 1. Find an approximate solution of (3), i.e., find uk+1 in the sense that

�k(u
k+1) := uk+1 + βk F(uk+1) − uk − βk F(uk) + γ e(uk, βk)

under the following inexactness restriction:

‖�k(u
k+1)‖ ≤ νk‖e(uk, βk) − e(uk+1, βk)‖ with sup νk = ν <

2 − γ

2
.
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Step 2. If the given stopping criterion is satisfied, then stop. Otherwise set

ωk = ‖βk[F(uk+1) − F(uk)]‖
‖uk+1 − uk‖ , (35)

and adjust the scaling parameter βk

βk =
⎧
⎨

⎩

3 ∗ βk if ωk < 0.3,

βk/3 if ωk > 3,

βk otherwise.
(36)

Set k := k + 1 and go to Step 1.

Remark 1 The strategy of adjusting the value of βk only needs to be applied for finite number
of steps, which does not affect the convergence of the proposed method.

To compare with He’s DPRV method [9], we use the same gradient method [8] to solve
the system of nonlinear equations

(SNE) u + βk F(u) = uk + βk F(uk) − γ e(uk, βk) (37)

inexactly (with the inexactness restriction (17)). Assume that F is Lipschitz continuous (say
with constant L). Note that problem (37) is a system of nonlinear equations of type �k(z) = 0
(see (16)) and the mapping �k is Lipschitz continuous

‖�k(x) − �k(y)‖ ≤ (1 + βk L)‖x − y‖, ∀x, y ∈ Rn

and strongly monotone with a constant modulus 1

‖x − y‖2 ≤ (x − y)T [�k(x) − �k(y)], ∀x, y ∈ Rn

For completeness, we list the implementation details of Step 1 in the following.

A gradient type method

Step 1.0. Given δ ∈ (0, 1), µ ∈ [0.5, 1), ε > 0, α > 0 and z0 ∈ Rn, set i = 0.
Step 1.1. If ‖�k(zi )‖ ≤ νk‖e(uk, βk)−e(zi , βk)‖, set uk+1 = zi and then stop. Otherwise,

go to Step 1.2.
Step 1.2. Find the smallest nonnegative integer li , such that αi = µli α and

zi+1 = zi − αi�k(z
i ) (38)

satisfies

ri := αi‖�k(zi ) − �k(zi+1)‖2

(zi − zi+1)T (�k(zi ) − �k(zi+1))
≤ 2 − δ. (39)

Step 1.3. Adjust αi for the next step to avoid too small improvement

αi =
{

αi ∗ 1.5 if ri ≤ 0.5,

αi otherwise.

Set i = i + 1, and go to Step 1.1.
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Table 1 Numerical results for
NCP with different n

n He’s DPRV method The modified method

No. of It. k No. of N f No. of It. k No. of N f

20 61 1673 56 929
100 68 1900 66 974
200 98 2944 102 1751
500 101 3037 96 2168
1000 110 3378 111 2512
2000 116 3601 126 2695

4.2 Numerical experiments

We consider the nonlinear complementarity problems (for short NCP): Find u ∈ Rn such
that

u ≥ 0, F(u) ≥ 0, uT F(u) = 0. (40)

In our test problem we take

F(u) = D(u) + Mu + q, (41)

where D(u) and Mu + q are the nonlinear part and the linear part of F(u), respectively.
We form the linear part Mu + q similarly as in [7].1 The matrix M = AT A + B, where
A is an n × n matrix whose entries are randomly generated in the interval (−5,+5) and a
skew-symmetric matrix B is generated in the same way. The vector q is generated from a
uniform distribution in the interval (−500, 0). In D(u), the nonlinear part of F(u), the com-
ponents are D j (u) = a j ∗ arctan(u j ) and a j is a random variable in (0, 1). A similar type of
the problem was tested in [11] and [13].2 We use the proposed method with the strategy of
adjusting βk to solve this set of problems. In each iteration the system of nonlinear equations
(SNE) was solved inexactly under the inexactness restriction (17) with νk ≡ 0.2. For com-
parison purpose, we also coded He’s DPRV method (the same method with the inexactness
restriction (4)). In He’s DPRV method, we take ηk = 1/(k2 + 1).

All codes were written in Matlab and run on an IBM X31 Notebook personal computer. In
all test examples we take β0 = 0.1 and γ = 1.5. The iterations begin with u0 = (0, . . . , 0) ∈
Rn and stop as soon as ‖e(uk)‖∞ ≤ 10−7. We list the numbers of iterations and the numbers
of mapping F evaluations (N f ) in Table 1 for the sake of comparison.

From the numerical results, we find that the inexactness restriction of the modified method
is efficiently relaxed almost without increasing the iteration numbers. Note that the compu-
tational costs in each iteration of these methods depend on the numbers of mapping F
evaluations greatly. For such constructed problems, we can observe from the above table that

total computational load of the modified method

total computational load of He’s DPRV method
< 0.75.

In addition, for a set of similar problems, it seems that these iteration numbers are not very
sensitive to the problem size.

1 In the paper by Harker and Pang [7], the matrix M = AT A + B + D, where A and B are the same matrices
as here, and D is a diagonal matrix with uniformly distributed random variable d j j ∈ (0, 0.3).
2 In [11] and [13], the components of nonlinear mapping D(u) are D j (u) = constant ∗ arctan(u j ).
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5 Conclusions

In this paper, we propose a modified inexact operator splitting method for monotone varia-
tional inequalities. The method possesses stronger efficiency, since its inexactness restriction
is much relaxed compared to that of He’s DPRV method. The preliminary numerical tests
show that the proposed method is attractive in practice.
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